12.6 / THE POWERPC PROCESSOR 451

25 31
S10fC ; B
i count
o|v|a yee
SO = Summary overflow: set to ! to indicate that an overflow occurred during the exection of an
instruction; remains 1 until reset by software
oV = Overflow: set to 1 to indicate that an overflow occurred during the exection of an instruction;
reset to O by next instruction if there is no overflow
CA = Carry: set to 1 to indicate carry out of bit 0 during the execution of an instruction

Byte count = Specifies number of bytes to be transferred by Load/Store String indexed instruction

(a) Fixed-point exception register (XER)

0 3/4 7/8 11/12 15/16 19/20 23/24 27 /28 31

CRO CR1 CR2 CR3 CR4 CRS CR6 CR7

e~ A~
Integer Floating-point
instructions instructions

Compare instructions

(b) Condition register

Figure 12.24 PowerPC Register Formats

» Condition register: Consists of eight 4-bit condition code fields (Figure 12.24b).

* Link register: The link register can be used in a conditional branch instruction
for indirect addressing of the target address. This register is also used for
call/return behavior. If the LK bit in a conditional branch instruction is set,
then the address following the branch instruction is placed in the link register,
and it can be used for a later return.

* Count: The count register can be used to control an iteration loop, as explained
in Chapter 10; the count register is decremented each time it is tested in a con-
ditional branch instruction. Another use for this register is indirect addressing
of the target address in a branch instruction.

The fields of the condition register have a number of uses. The first 4 bits
(CRO) are set for all integer arithmetic instructions for which the R bit is set. As
Table 12.5 shows, the field indicates whether the result of the operation is posi-
tive, negative, or zero. The fourth bit is a copy of the summary overflow bit from
the XER. The next field (CR1) is set for all floating-point arithmetic instructions
for which the Rc bit is set. In this case, the 4 bits are set equal to the first four bits
of the FPSCR (Table 12.4). Finally, the eight condition fields (CRO through CR7)
can be used with a compare instruction; in each case, the identity of the field is
specified in the instruction itself. For both fixed-point and floating-point compare
instructions, the first 3 bits of the designated condition field record whether the
first operand is less than, greater than, or equal to the second operand. The fourth

452 CHAPTER 12 / PROCESSOR STRUCTURE AND FUNCTION

Table 12.5 Interpretation of Bits in Condition Register

<CRO (integer CR1 (floating-point CRi (fixed-point CRi (floating-point
instruction instraction

Bit position. withRe == 1) withRe = 1) instruction) instruction)

i oo pesult <0Q- - . Exeeption summary opl < op2 -+ opl <op2
i+1 result > 0 Enabled exception summary opl > op2 ‘opl > op2
i+2 result =0 Invalid operation exception opl = op2 " opl = op2
i+3 Summary overflow Overflow exception Summary overflow unordered (one

operand is a NaN)

bit is the summary overflow bit for a fixed-point compare, and an unordered
indicator for a floating-point compare.

Interrupt Processing

As with any processor, the PowerPC includes a facility that enables the processor
to interrupt the currently executing program to deal with an exception condition.

Types of Interrupts Interrupts on a PowerPC are classified as those caused by
some system condition or event and those caused by the execution of an instruction.
Table 12.6 lists the interrupts recognized by the PowerPC.

Most of the interrupts listed in the table are easily understood. A few warrant
further comment. The system reset interrupt happens at power on and when the reset
button on the system unit is pressed, and it causes the system to reboot. The machine
check interrupt deals with certain anomalies, such as cache parity error and reference
to a nonexistent memory location, and may cause the system to enter what is known
as a checkstop state; this state suspends processor execution and freezes the contents
of registers until a reboot. The floating-point assist enables the processor to invoke
software routines to complete operations that cannot be handled directly by the
floating-point unit, such as those involving denormalized numbers or unimple-
mented floating-point opcodes.

Machine State Register Fundamental to the interruption of a program is the
ability to recover the state of the processor at the time of the interrupt. This
includes not only the contents of the various registers but also various control
conditions relating to execution. These conditions are conveniently summarized in
the MSR (Table 12.7). Again, several of the bits in this register warrant further
comment.

When the privilege mode bit (bit 49) is set, the processor is operating at a user
privilege level. Only a subset of the instruction set is available. When the bit is
cleared, the processor operates at supervisor privilege level. This enables all of the
instructions and provides access to certain system registers (such as the MSR) not
accessible from the user privilege level.

Table 12.6

PowerPC Interrupt Table

12.6 / THE POWERPC PROCESSOR 453

Entry Point Interrupt Type Description

00000h Reserved

00100h System reset Assertion of the pm:mot s mw@ reset

00200h Machine check _As A itis

00300h Data storage Examples: data page fault; access rights violation on
load/store

00400h Instruction storage Code page fault; attempted instruction fetch from
1/O segment; access rights violation

00500h External - -

00600h Alignment Unsuccessful attempt to access memory due to
misaligned operand

00700h Program Floating-point interrupt; user attempts to execute
privileged instruction; trap instruction executed
with specified condition met; illegal instruction

00800h Floating-point Attempt to execute floating-point instruction with

unavailable floating-, pomt umt disabled

00900h Decrementer Exhaustion of dgcnmemer rwhen
external interrupt récognition is ena&ed

00A00h Reserved

00B0Oh Reserved

00C00h System call Execution of a system call instruction

00DO0Oh Trace Single-step or branch trace interrupt

00E0Ch Floating-point assist Attempt to execute relatively infrequent, complex
floating-point operation (e.g., operation on
denormalized number)

00E10h through Reserved
O00FFFh
01000h through Reserved
02FFFh (implementation specific)

Unshaded: interrupts caused by instruction execution
Shaded: interrupts not caused by instruction execution

The values of the two floating-point exception bits (bits 52 and 55) define the
types of interrupts that the floating-point unit may generate. The interpretation is
as follows:

FEO FE1 Interrupts that will be recognized
0 0 None
0 1 Imprecise nonrecoverable
1 0 Imprecise recoverable
1 1 Precise

454 CHAPTER 12 / PROCESSOR STRUCTURE AND FUNCTION

Table 12.7 PowerPC Machine State Register

Bit Definition
0 Processor is in 32-bit/64-bit mode
1:44 Reserved
: at b ity
- Defines whether interrupt handlers run in big-endian or little-endian mode
48 External interrupt enabled/disabled
49 Privileged/nonprivileged state
50 Floating-point unit available/unavailable
51 Machine check interrupts enabled/disabled
52 Floating-point exception mode 0
53 Single-steb trace enabled/disabled
54 Branch trace enabled/disabled
55 Floating-point exception mode 1
56 Reserved
57 Most significant part of exception address is 000h/FFFh
58 Instruction address translation on/off
59 Data address translation on/off
60:61 Reserved
62 Interrupt is recoverable/nonrecoverable
63 Processor is in Big-Endian/Little-Endian mode

Unshaded: copied to SRR1
Shaded: not copied to SRR1

When the single-step trace bit (bit 53) is set, the processor branches to the trace
interrupt handler after the successful completion of each instruction. When the branch
trace bit (bit 54) is set, the processor branches to the branch trace interrupt handler
after the successful completion of each branch instruction, whether or not the branch
was taken. '

The instruction address translation (bit 58) and data address translation (bit 59)
determine whether real addressing is used or whether the memory-management unit
performs address translation.

Interrupt Handling When an interrupt occurs and is recognized by the processor,
the following sequence of events takes place:

1. The processor places the address of the instruction to be executed next in the
Save/Restore Register 0 (SRRO). This is the address of the currently executing
instruction if the interrupt was caused by a failed attempt to execute that
instruction; otherwise, it is the address of the next instruction to be executed
after the current instruction.

™~

The processor copies machine state information from the MSR to the
Save/Restore Register 1 (SRR1). The bits that are depicted as unshaded in

12.7 / RECOMMENDED READING 455

Table 12.7 are copied. The remaining bits of SRR1 are loaded with informa-
tion specific to the interrupt type.

3. The MSR is set to a hardware-defined value specific to the interrupt type. For
all interrupt types, address translation is turned off and external interrupts are
disabled.

4. The processor then transfers control to the appropriate interrupt handler. The
addresses of the interrupt handlers are stored in the Interrupt Table (Table 12.6).
The base address of that table is determined by bit 57 of the MSR.

To return from an interrupt, the interrupt service routine executes an rfi (return
from interrupt) instruction. This causes the bit values saved in SRR1 to be restored to
the MSR. Execution resumes at the location stored in SRRO.

12.7 RECOMMENDED READING

[PATTO1] and [MOSHO1] provide excellent coverage of the pipelining issues discussed in this
chapter. [HENNO1] contains a detailed discussions of pipelining. [SOHI90] provides an excel-
lent, detailed discussion of the hardware design issues involved in an instruction pipeline.

[EVERO1] examines the evolution of branch prediction strategies. [CRAG92] is a
detailed study of branch prediction in instruction pipelines. [DUBE91] and [LILJ88] examine
various branch prediction strategies that can be used to enhance the performance of instruc-
tion pipelining. [KAEL91] examines the difficulty introduced into branch prediction by
instructions whose target address is variable.

[BREYO03] provides good coverage of interrupt processing on the Pentium, as does
[SHAND9S] for the PowerPC.

456 CHAPTER 12 / PROCESSOR STRUCTURE AND FUNCTION

PATTO1 Patt, Y. “Requirements, Bottlenecks, and Good Fortune: Agents for Micro-
processor Evolution.” Proceedings of the IEEE, November 2001,

SHANS9S Shanley, T. PowerPC System Architecture. Reading, MA: Addison-Wesley,
1995. :

SOHI9% Sohi, G. “Instruction Issue Logic for High-Performance Interruptable, Multiple
-Functional Unit, Pipelined Computers” [EEE Transactions on Computers,

March 1990.
12.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS
Key Terms
condition code instruction cycle program status word (PSW)
delayed branch ‘ instruction pipeline

Review Questions

12.1 What general roles are performed by processor registers?

12.2 What categories of data are commonly supported by user-visible registers?
12.3 What is the function of condition codes?

12.4 What is a program status word?

12.5 Why is a two-stage instruction pipeline unlikely to cut the instruction cycle time in
half, compared with the use of no pipeline?

12.6 List and briefly explain various ways in which an instruction pipeline can deal with
conditional branch instructions.

12.7 How are history bits used for branch prediction?

Problems

12.1 a. If the last operation performed on a computer with an 8-bit word was an addition
in which the two operands were 00000010 and 00000011, what would be the value
of the following flags?

Carry

Zero

Overflow

Sign

Even parity

Half-carry

b. Repeat for the addition of ~1 (twos complement) and +1?
12.2 Repeat Problem 12.1 for the operation A — B, where A contains 11110000 and B
contains 0010100.
12.3 A microprocessor is clocked at a rate of 5 GHz.
a. How long is a clock cycle?
b. What is the duration of a particular type of machine instruction consisting of three
clock cycles?

12.4

—
~
(713

12.6

12.7

12.8

12.9

12.10

12.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 457

A microprocessor provides an instruction capable of moving a string of bytes from
one area of memory to another. The fetching and initial decoding of the instruction
takes 10 clogk cycles. Thereafter, it takes 15 clock cycles to transfer each byte. The
microprocessor is clocked at a rate of 5 GHz.

a. Determine the length of the instruction cycle for the case of a string of 64 bytes.

b. What is the worst-case delay for acknowledging an interrupt if the instruction is
noninterruptible?

¢. Repeat part (b) assuming the instruction can be interrupted at the beginning of
each byte transfer.

The Intel 8088 consists of a bus interface unit (BIU) and an execution unit (EU),
which form a 2-stage pipeline. The BIU fetches instructions into a 4-byte
instruction queue. The BIU also participates in address calculations, fetches
operands, and writes results in memory as requested by the EU. If no such requests
are outstanding and the bus is free, the BIU fills any vacancies in the instruction
queue. When the EU completes execution of an instruction, it passes any results to
the BIU (destined for memory or 1/0) and proceeds to the next instruction.

a. Suppose the tasks performed by the BIU and EU take about equal time. By what
factor does pipelining improve the performance of the 8088? Ignore the effect of
branch instructions.

b. Repeat the calculation assuming that the EU takes twice as long as the BIU.

Assume an 8088 is executing a program in which the probability of a program jump is

0.1. For simplicity, assume that all instructions are 2 bytes long.

a. What fraction of instruction fetch bus cycles is wasted?

b. Repeat if the instruction queue is 8 bytes long.

Consider the timing diagram of Figure 12.10. Assume that there is only a two-stage

pipeline (fetch, execute). Redraw the diagram to show how many time units are now

needed for four instructions.

Assume a pipeline with 4 stages: fetch instruction (FI), decode instruction and caicu-

late addresses (DA), fetch operand (FO), and execute (EX). Draw a diagram similar

to Figure 12.10 for a sequence of 7 instructions, in which the third instruction is a

branch that is taken and in which there are no data dependencies.

A pipelined processor has a clock rate of 2.5 GHz and executes a program with

1.5 million instructions. The pipeline has five stages, and instructions are issued at a

rate of one per clock cycle. Ignore penalties due to branch instructions and out-of-

sequence executions.

2. What is the speedup of this processor for this program compared to a nonpipelined
processor, making the same assumptions used in Section 12.4?

b. What is throughput (in MIPS) of the pipelined processor?

A nonpipelined processor has a clock rate of 2.5 GHz and an average CPI (cycles per
instruction) of 4. An upgrade to the processor introduces a five-stage pipeline. However,
due to internal pipeline delays, such as latch delay, the clock rate of the new processor
has to be reduced to 2 GHz.

a. What is the speedup achieved for a typical program?

b. What is the MIPS rate for each processor?

Consider an instruction sequence of length n that is streaming through the instruction
pipeline. Let p be the probability of encountering a conditional or unconditional branch
instruction, and let q be the probability that execution of a branch instruction I causes a
jump to a nonconsecutive address. Assume that each such jump requires the pipeline to
be cleared, destroying all ongoing instruction processing, when I emerges from the last
stage. Revise Equations (12.1) and (12.2) to take these probabilities into account.

One limitation of the multiple-stream approach to dealing with branches in a pipeline
is that additional branches will be encountered before the first branch is resolved.
Suggest two additional limitations or drawbacks.

Consider the state diagrams of Figure 12.25.

a. Describe the behavior of each.

458 CHAPTER 12 / PROCESSOR STRUCTURE AND FUNCTION

Taken

Taken

Not taken

Not taken

Taken

Not taken

Figure 12.25

12.14

Not taken

Taken

Not taken Not taken
State Diagram for Problem 12.5

b. Compare these with the branch prediction state diagram in Section 12.4. Discuss
the relative merits of each of the three approaches to branch prediction.

The Motorola 680x0 machines include the instruction Decrement and Branch According

to Condition, which has the following form:

DBcc Dn, displacement

where cc is one of the testable conditions, Dn is a general-purpose register, and dis-
placement specifies the target address relative to the current address. The instruction
can be defined as follows:

if (cc = False)
then begin

Dn:=(Dn) - 1,

if Dn # —1 then PC := (PC) + displacement end
else PC := (PC) + 2;

When the instruction is executed, the condition is first tested to determine whether
the termination condition for the loop is satisfied. If so, no operation is performed and
execution continues at the next instruction in sequence. If the condition is false, the
specified data register is decremented and checked to see if it is less than zero. If it is
less than zero, the loop is terminated and execution continues at the next instruction
in sequence. Otherwise, the program branches to the specified location. Now consider
the following assembly-language program fragment:

AGAIN CMPM.L (A0)+(Al)+
DBNE D1,AGAIN
NOP

Two strings addressed by A0 and A1 are compared for equality; the string pointers
are incremented with each reference. D1 initially contains the number of longwords
(4 bytes) to be compared.

12.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 459

Table 12.8 Branch Behavior in Sample Appllcatlons

| Occurrence of branch classes:
Type It Branch LT25% .
'IVpez.memm o o98%
Type 3: Procédure call, return. 17.7%
Typelbniehﬂiaeﬂm R
Unconditional—~100% goto target
Condmmkwemmmet '

| Conditional— ';uesgatom(ﬁ:rme)
Type 2 braunch (all environments)
That go to target 91%

'That go inline 9%
Type 3 branch
100% go to target

a. The initial contents of the registers are A 0 = $00004000, A 1 = $00005000, and
D 1 = $000000FF (the $ indicates hexadecimal notation). Memory between $4000
and $6000 is loaded with words SAAAA. If the foregoing program is run, specify the
number of times the DBNE loop is executed and the contents of the three registers
when the NOP instruction is reached.

b. Repeat (a), but now assume that memory between $4000 and $4FEE is loaded
with $0000 and between $5000 and $6000 is loaded with SAAA.

12.15 Redraw Figure 12.19c, assuming that the conditional branch is not taken.

12.16 Table 12.8 summarizes statistics from [MACD84] concerning branch behavior for
various classes of applications. With the exception of type 1 branch behavior, there is
no noticeable difference among the application classes. Determine the fraction of all
branches that go to the branch target address.

12.17 Pipelining can be applied within the ALU to speed up floating-point operations. Con-
sider the case of floating-point addition and subtraction. In simplified terms, the
pipeline could have 4 stages: 1. Compare the exponents; 2. Choose the exponent and
align the significands; 3. Add or subtract significands; 4. Normalize the results. The
pipeline can be considered to have two parallel threads, one handling exponents and
one handling significands, and could start out like this:

Exponents Significands
a b A B

In this figure, the boxes labeled R refer to a set of registers used to hold temporary
results. Complete the block diagram that shows at a top level the structure of the
pipeline.

CHAPTER

REDUCED INSTRUCTION
SET COMPUTERS |

460

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

Instruction Execution Characteristics
The Use of a Large Registér Filt;
Compiler-Based Register Optimization
Reduced Instruction Set Architecture
RISC Pipelining

MIPS R4000

SPARC

RISC versus CISC Controversy
Recommended Reading

13.10 Key Terms, Review Questions, and Problems

1 7 INSTRUCTION EXECUTION CHARACTERISTICS 461

KEY POINTS

* Studies of the execution behavior of high-level language programs have
provided guidance in designing a new type of processor architecture; the
reduced instruction set computer (RISC). Assignment statements predomi-
nate, suggesting that the simple movement of data should be optimized.
There are also many IF and LOOP instructions, which suggest that the
.underlying sequence control mechanism needs to be optimized to permit
efficient pipelining. Studies of operand reference patterns suggest that it
should be possible to enhance performance by keeping a moderate number
of operands in registers.

¢ These studies have motivated the key characteristics of RISC machines:
(1) a limited instruction set with a fixed format, (2) a large number of regis-
ters or the use of a compiler that optimizes register usage, and (3) an empha-
sis on optimizing the instruction pipeline.

¢ The simple instruction set of a RISC lends itself to efficnent pipelining
because there are fewer and more predictable operations performed per

. instruction. A RISC instruction set architecture also lends-itself to the -

- ' delayed branch technique, in which branch instructions are rearranged

with other instructions to improve pipeline efficiency.

Since the development of the stored-program computer around 1950, there have been
remarkably few true innovations in the areas of computer organization and architec-
ture. The following are some of the major advances since the birth of the computer:

* The family concept: Introduced by IBM with its System/360 in 1964, followed
shortly thereafter by DEC, with its PDP-8. The family concept decouples the
architecture of a machine from its implementation. A set of computers is
offered, with different price/performance characteristics, that presents the
same architecture to the user. The differences in price and performance are
due to different implementations of the same architecture.

* Microprogrammed control unit: Suggested by Wilkes in 1951 and introduced by
IBM on the S/360 line in 1964. Microprogramming eases the task of designing
and implementing the control unit and provides support for the family concept.

» Cache memory: First introduced commercially on IBM $/360 Model 85 in 1968.
The insertion of this element into the memory hierarchy dramatically improves
performance.

* Pipelining: A means of introducing parallelism into the essentially sequential
nature of a machine-instruction program. Examples are instruction pipelining
and vector processing.

* Multiple processors: This category covers a number of different organizations
and objectives.

462 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

* Reduced instruction set computer (RISC) architecture: This is the focus of
this chapter.

The RISC architecture is a dramatic departure from the historical trend in proces-
sor architecture. An analysis of the RISC architecture brings into focus many of the
important issues in computer organization and architecture.

~Although RISC systems have been defined and designed in a variety of ways by
different groups, the key elements shared by most designs are these:

* A large number of general-purpose registers, and/or the use of compiler tech-
nology to optimize register usage

¢ A limited and simple instruction set
* An emphasis on optimizing the instruction pipeline

Table 13.1 compares several RISC and non-RISC systems.

We begin this chapter with a brief survey of some results on instruction sets, and
then examine each of the three topics just listed. This is followed by a description of two
of the best-documented RISC designs.

13.1 INSTRUCTION EXECUTION CHARACTERISTICS

One of the most visible forms of evolution associated with computers is that of
programming languages. As the cost of hardware has dropped, the relative cost of
software has risen. Along with that, a chronic shortage of programmers has driven
up software costs in absolute terms. Thus, the major cost in the life cycle of a system
is software, not hardware. Adding to the cost, and to the inconvenience, is the ele-
ment of unreliability: It is common for programs, both system and application, to
continue to exhibit new bugs after years of operation.

The response from researchers and industry has been to develop ever more
powerful and complex high-level programming languages. These high-level languages
(HLLs) allow the programmer to express algorithms more concisely, take care of
much of the detail, and often support naturally the use of structured programming or
object-oriented design.

Alas, this solution gave rise to another problem, known as the semantic gap, the
difference between the operations provided in HLLs and those provided in computer
architecture. Symptoms of this gap are alleged to include execution inefficiency,
excessive machine program size, and compiler complexity. Designers responded with
architectures intended to close this gap. Key features include large instruction sets,
dozens of addressing modes, and various HLL statements implemented in hardware.
An example of the latter is the CASE machine instruction on the VAX. Such complex
instruction sets are intended to

¢ Ease the task of the compiler writer.

* Improve execution efficiency, because complex sequences of operations can
be implemented in microcode.

* Provide support for even more complex and sophisticated HLLs.

463

W = 7691 821 % 8 v 0

- - = - = 92 08y 0y
w 0zS - O 43 (43 0TS - 0p g | et Cet
1 .t _z 1 ! 5 S £ A A
¥ S 4 4 4 11-1 o A P
: o ; 74 v 69 see | . g€ 802
9661 | 9661 £661 1661 L861 6861 8l | et
0001y J¥vdS | ooy |- 98b08 08L1L | BOWOLE
CSAIN | own c | Ddiemod SN | Ouvds 1w CXVA | Wel
o memosiadeg sndwo) (OSR) 13§ e —

‘ uopIRYsU] PIONPIY ey noponns soduio)

108592014 1e[eos1adng pue ‘SHSTY ‘SOSID SWOS JO sonsudeIey) ¢l AYEL

464

CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

Meanwhile, a number of studies have been done over the years to determine
the characteristics and patterns of execution of machine instructions generated
from HLL programs. The results of these studies inspired some researchers to look
for a different approach: namely, to make the architecture that supports the HLL
simpler, rather than more complex.

To understand the line of reasoning of the RISC advocates, we begin with a
brief review of instruction execution characteristics. The aspects of computation of
interest are as follows:

¢ Operations performed: These determine the functions to be performed by the
processor and its interaction with memory.

* Operands used: The types of operands and the frequency of their use deter-
mine the memory organization for storing them and the addressing modes for
accessing them.

» Execution sequencing: This determines the control and pipeline organization.

In the remainder of this section, we summarize the results of a number of
studies of high-level-language programs. All of the results are based on dynamic
measurements. That is, measurements are collected by executing the program
and counting the number of times some feature has appeared or a particular
property has held true. In contrast, static measurements merely perform these
counts on the source text of a program. They give no useful information on per-
formance, because they are not weighted relative to the number of times each
statement is executed.

Operations

A variety of studies have been made to analyze the behavior of HLL programs.
Table 4.8, discussed in Chapter 4, includes key results from a number of studies.
There is quite good agreement in the results of this mixture of languages and appli-
cations. Assignment statements predominate, suggesting that the simple movement
of data is of high importance. There is also a preponderance of conditional state-
ments (IF, LOOP). These statements are implemented in machine language with
some sort of compare and branch instruction. This suggests that the sequence con-
trol mechanism of the instruction set is important.

These results are instructive to the machine instruction set designer, indicating
which types of statements occur most often and therefore should be supported in an
“optimal” fashion. However, these results do not reveal which statements use the
most time in the execution of a typical program. That is, given a compiled machine-
language program, which statements in the source language cause the execution of
the most machine-language instructions?

To get at this underlying phenomenon, the Patterson programs [PATT82a],
described in Appendix 4A, were compiled on the VAX, PDP-11, and Motorola 68000
to determine the average number of machine instructions and memory references
per statement type. The second and third columns in Table 13.2 show the relative fre-
quency of occurrence of various HLL instructions in a variety of programs; the data
were obtained by observing the occurrences in running programs rather than just the
number of times that statements occur in the source code. Hence these are dynamic

13.1 / INSTRUCTION EXECUTION CHARACTERISTICS 465

Table 13.2 Weighted Relative Dynamic Frequency of HLL Operations [PATT82a]

R ‘ Machine-Instruction ' Memory-Reference
Dynamic Occurrence Weighted Weighted

] * Pascal C Pascal C
ASSIGN 13% 13% 14% 15%
LOOP 2% C32% 33% 26%
CALL 31% 33% 4% 45%
IF N 1% 21% 7% 13%
GOTO i - - -
- OTHER 3% 1% 2% 1%

frequency statistics. To obtain the data in columns four and five (machine-instruction
weighted), each value in the second and third columns is multiplied by the number of
machine instructions produced by the compiler. These results are then normalized
so that columns four and five show the relative frequency of occurrence, weighted
by the number of machine instructions per HLL statement. Similarly, the sixth and
seventh columns are obtained by muitiplying the frequency of occurrence of each
statement type by the relative number of memory references caused by each state-
ment. The data in columns four through seven provide surrogate measures of the
actual time spent executing the various statement types. The results suggest that
the procedure call/return is the most time-consuming operation in typical HLL
programs.

The reader should be clear on the significance of Table 13.2. This table indi-
cates the relative significance of various statement types in an HLL, when that HLL
is compiled for a typical contemporary instruction set architecture. Some other
architecture could conceivably produce different results. However, this study pro-
duces results that are representative for contemporary complex instruction set com-
puter (CISC) architectures. Thus, they can provide guidance to those looking for
more efficient ways to support HLLs.

Operands

Much less work has been done on the occurrence of types of operands, despite the
importance of this topic. There are several aspects that are significant.

The Patterson study already referenced [PATT82a] also looked at the dynamic
frequency of occurrence of classes of variables (Table 13.3). The results, consistent
between Pascal and C programs, show that the majority of references are to simple

Table 13.3 Dynamic Percentage of Operands

Pascal C Average
Integer constant 16% 23% 20%
Scalar variable 58% 53% 55%
Array/structure 26% 24% 25%

466 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

scalar variables. Further, more than 80% of the scalars were local (to the procedure)
variables. In addition, references to arrays/structures require a previous reference to
their index or pointer, which again is usually a local scalar. Thus, there is a prepon-
derance of references to scalars, and these are highly localized.

The Patterson study examined the dynamic behavior of HLL programs,
independent of the underlying architecture. As discussed before, it is necessary to
deal with actual architectures to examine program behavior more deeply. One
study, [LUND77], examined DEC-10 instructions dynamically and found that each
instruction on the average references 0.5 operand in memory and 1.4 registers.
Similar results are reported in [HUCKS83] for C, Pascal, and FORTRAN programs
on $/370, PDP-11, and VAX. Of course, these figures depend highly on both the
architecture and the compiler, but they do illustrate the frequency of operand
accessing.

These latter studies suggest the importance of an architecture that lends itself
to fast operand accessing, because this operation is performed so frequently. The
Patterson study suggests that a prime candidate for optimization is the mechanism
for storing and accessing local scalar variables.

Procedure Calls

We have seen that procedure calls and returns are an important aspect of HLL
programs. The evidence (Table 13.2) suggests that these are the most time-consuming
operations in compiled HLL programs. Thus, it will be profitable to consider ways
of implementing these operations efficiently. Two aspects are significant: the number of
parameters and variables that a procedure deals with, and the depth of nesting.

Tanenbaum’s study [TANE78] found that 98% of dynamically called procedures
were passed fewer than six arguments and that 92% of them used fewer than six local
scalar variables. Similar results were reported by the Berkeley RISC team [KATES3],
as shown in Table 13.4. These results show that the number of words required per
procedure activation is not large. The studies reported earlier indicated that a high pro-
portion of operand references is to local scalar variables. These studies show that those
references are in fact confined to relatively few variables.

The same Berkeley group also looked at the pattern of procedure calls and
returns in HLL programs. They found that it is rare to have a long uninterrupted
sequence of procedure calls followed by the corresponding sequence of returns.

Table 13.4 Procedure Arguments and Local Scalar Variables

13.2 / THE USE OF A LARGE REGISTER FILE 467

Rather, they found that a program remains confined to a rather narrow window
of procedure-invocation depth. This is illustrated in Figure 4.16, which was discussed
in Chapter 4. These results reinforce the conclusion that operand references are
highly localized.

Implications

A number of groups have looked at results such as those just reported and have
concluded that the attempt to make the instruction set architecture close to HLLs
is not the most effective design strategy. Rather, the HLLs can best be supported
by optimizing performance of the most time-consuming features of typical HLL
programs.

Generalizing from the work of a number of researchers, three elements emerge
that, by and large, characterize RISC architectures. First, use a large number of regis-
ters or use a compiler to optimize register usage. This is intended to optimize operand
referencing. The studies just discussed show that there are several references per
HLL instruction and that there is a high proportion of move (assignment) state-
ments. This, coupled with the locality and predominance of scalar references, suggests
that performance can be improved by reducing memory references at the expense of
more register references. Because of the locality of these references, an expanded
register set seems practical.

Second, careful attention needs to be paid to the design of instruction
pipelines. Because of the high proportion of conditional branch and procedure
call instructions, a straightforward instruction pipeline will be inefficient. This
manifests itself as a high proportion of instructions that are prefetched but never
executed.

Finally, a simplified (reduced) instruction set is indicated. This point is not as
obvious as the others, but should become clearer in the ensuing discussion.

13.2 THE USE OF A LARGE REGISTER FILE

The results summarized in Section 13.1 point out the desirability of quick access to
operands. We have seen that there is a large proportion of assignment statements in
HLL programs, and many of these are of the simple form A < B. Also, there is a
significant number of operand accesses per HLL statement. If we couple these
results with the fact that most accesses are to local scalars, heavy reliance on register
storage is suggested.

The reason that register storage is indicated is that it is the fastest available stor-
age device, faster than both main memory and cache. The register file is physically
small, on the same chip as the ALU and control unit, and employs much shorter
addresses than addresses for cache and memory. Thus, a strategy is needed that will
allow the most frequently accessed operands to be kept in registers and to minimize
register-memory operations.

Two basic approaches are possible, one based on software and the other on
hardware. The software approach is to rely on the compiler to maximize register
usage. The compiler will attempt to allocate registers to those variables that will

468 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

be used the most in a given time period. This approach requires the use of sophis-
ticated program-analysis algorithms. The hardware approach is simply to use

more registers so that more variables can be held in registers for longer peri

of time.

S

In this section, we will discuss the hardware approach. This approach has been
pioneered by the Berkeley RISC group [PATT82a]; was used in the first commercial
RISC product, the Pyramid [RAGAG83]; and is currently used in the popular SPARC

architecture.

Register Windows

On the face of it, the use of a large set of registers should decrease the need to access
memory. The design task is to organize the registers in such a fashion that this goal

is realized.

Because most operand references are to local scalars, the obvious approach is
to store these in registers, with perhaps a few registers reserved for global variables.
The problem is that the definition of local changes with each procedure call and
return, operations that occur frequently. On every call, local variables must be saved
from the registers into memory, so that the registers can be reused by the called pro-
gram. Furthermore, parameters must be passed. On return, the variables of the par-
ent program must be restored (loaded back into registers) and results must be
passed back to the parent program.

The solution is based on two other results reported in Section 13.1. First, a
typical procedure employs only a few passed parameters and local variables
(Table 13.4). Second, the depth of procedure activation fluctuates within a rela-
tively narrow range (Figure 4.16). To exploit these properties, multiple small sets
of registers are used, each assigned to a different procedure. A procedure call
automatically switches the processor to use a different fixed-size window of regis-
ters, rather than saving registers in memory. Windows for adjacent procedures are
overlapped to allow parameter passing.

The concept is illustrated in Figure 13.1. At any time, only one window of regis-
ters is visible and is addressable as if it were the only set of registers (e.g., addresses
0 through N — 1). The window is divided into three fixed-size areas. Parameter
registers hold parameters passed down from the procedure that called the current
procedure and hold results to be passed back up. Local registers are used for local
variables, as assigned by the compiler. Temporary registers are used to exchange
parameters and results with the next lower level (procedure called by current

Parameter
 registers

Local
-registers

Temporary
registers

Figure 13.1

K/‘Y-_J
Call/return

e

Level J

Parameter

registers

Local
registers

Temporary
registers

Overlapping Register Windows

Level J + 1

13.2 / THE USE OF A LARGE REGISTER FILE 469

procedure). The temporary registers at one level are physically the same as the para-
meter registers at the next lower level. This overlap permits parameters to be passed
without the actual movement of data.

To handle any possible pattern of calls and returns, the number of register win-
dows would have to be unbounded. Instead, the register windows can be used to
hold the few most recent procedure activations. Older activations must be saved in
memory and later restored when the nesting depth decreases. Thus, the actual
organization of the register file is as a circular buffer of overlapping windows. Two
notable examples of this approach are Sun’s SPARC architecture, described in
Section 13.7, and the IA-64 architecture used in Intel’s Itanium processor, described
in Chapter 15.

The circular organization is shown in Figure 13.2, which depicts a circular
buffer of six windows. The buffer is filled to a depth of 4 (A called B; B called C; C
called D) with procedure D active. The current-window pointer (CWP) points to
the window of the currently active procedure. Register references by a machine
instruction are offset by this pointer to determine the actual physical register. The
saved-window pointer identifies the window most recently saved in memory.
If procedure D now calls procedure E, arguments for E are placed in D’s tempo-
rary registers (the overlap between w3 and w4) and the CWP is advanced by one
window.

Restore gave

Current-
window
pointer
y
__W

Figure 13.2 Circular-Buffer Organization of Overlapped Windows

470

CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

If procedure E then makes a call to procedure F, the call cannot be made with
the current status of the buffer. This is because F’s window overlaps A’s window. If
F begins to load its temporary registers, preparatory to a call, it will overwrite the
parameter registers of A (A.in). Thus, when CWP is incremented (modulo 6) so
that it becomes equal to SWP, an interrupt occurs, and A’s window is saved. Only

- the first two portions (A.in and A.loc) need be saved. Then, the SWP is increment-

ed and the call to F proceeds. A similar interrupt can occur on returns. For example,
subsequent to the activation of F, when B returns to A, CWP is decremented
and becomes equal to SWP. This causes an interrupt that results in the restoration
of A’s window.

From the preceding, it can be seen that an N-window register file can hold only
N — 1 procedure activations. The value of N need not be large. As was mentioned
in Appendix 4A, one study [TAMI83] found that, with 8 windows, a save or restore
is needed on only 1% of the calls or returns. The Berkeley RISC computers use
8 windows of 16 registers each. The Pyramid computer employs 16 windows of
32 registers each.

Global Variables

The window scheme just described provides an efficient organization for storing local
scalar variables in registers. However, this scheme does not address the need to store
global variables, those accessed by more than one procedure. Two options suggest
themselves. First, variables declared as global in an HLL can be assigned memory
locations by the compiler, and all machine instructions that reference these variables
will use memory-reference operands. This is straightforward, from both the hardware
and software (compiler) points of view. However, for frequently accessed global vari-
ables, this scheme is inefficient.

An alternative is to incorporate a set of global registers in the processor. These
registers would be fixed in number and available to all procedures. A unified num-
bering scheme can be used to simplify the instruction format. For example, refer-
ences to registers 0 through 7 could refer to unique global registers, and references
to registers 8 through 31 could be offset to refer to physical registers in the current
window. There is an increased hardware burden to accommodate the split in register
addressing. In addition, the compiler must decide which global variables should be
assigned to registers.

Large Register File versus Cache

The register file, organized into windows, acts as a small, fast buffer for holding a
subset of all variables that are likely to be used the most heavily. From this point of
view, the register file acts much like a cache memory, although a much faster memory.
The question therefore arises as to whether it would be simpler and better to use a
cache and a small traditional register file.

Table 13.5 compares characteristics of the two approaches. The window-based
register file holds all the local scalar variables (except in the rare case of window over-
flow) of the most recent N — 1 procedure activations. The cache holds a selection of
recently used scalar variables. The register file should save time, because all local
scalar variables are retained. On the other hand, the cache may make more efficient

13.2 / THE USE OF A LARGE REGISTER FILE 471

Table 13.5 Characteristics of Large-Register-File and Cache

Organizations
Alldocat scalars SR ¢ Recently-used local scalars

' Individual variables .+ .. Blocksof memory
Compiler-assigned global variables Recently-used global variables

- Save/Restore based on procedure Save/Restore based on cache
nesting depth A e e TSRS replacement algorithm

use of space, because it is reacting to the situation dynamically. Furthermore, caches
generally treat all memory references alike, including instructions and other types of
data. Thus, savings in these other areas are possible with a cache and not a register file.

A register file may make inefficient use of space, because not all procedures
will need the full window space allotted to them. On the other hand, the cache suffers
from another sort of inefficiency: Data are read into the cache in blocks. Whereas the
register file contains only those variables in use, the cache reads in a block of data,
some or much of which will not be used.

The cache is capable of handling global as well as local variables. There are
usually many global scalars, but only a few of them are heavily used [KATES3].
A cache will dynamically discover these variables and hold them. If the window-based
register file is supplemented with global registers, it too can hold some global scalars.
However, it is difficult for a compiler to determine which globals will be heavily used.

With the register file, the movement of data between registers and memory is
determined by the procedure nesting depth. Because this depth usually fluctuates
within a narrow range, the use of memory is relatively infrequent. Most cache
memories are set associative with a small set size. Thus, there is the danger that
other data or instructions will overwrite frequently used variables.

Based on the discussion so far, the choice between a large window-based register
file and a cache is not clear-cut. There is one characteristic, however, in which the regis-
ter approach is clearly superior and which suggests that a cache-based system will be
noticeably slower. This distinction shows up in the amount of addressing overhead
experienced by the two approaches.

Figure 13.3 illustrates the difference. To reference a local scalar in a window-
based register file, a “virtual” register number and a window number are used. These
can pass through a relatively simple decoder to select one of the physical registers. To
reference a memory location in cache, a full-width memory address must be generat-
ed. The complexity of this operation depends on the addressing mode. In a set asso-
ciative cache, a portion of the address is used to read a number of words and tags
equal to the set size. Another portion of the address is compared with the tags, and
one of the words that were read is selected. It should be clear that even if the cache is
as fast as the register file, the access time will be considerably longer. Thus, from the
point of view of performance, the window-based register file is superior for local
scalars. Further performance improvement could be achieved by the addition of
a cache for instructions only.

472 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

Instruction

Registers
A > » Data
Decoder
(a) Windows-based register file
Instruction
[T a]
> Tags Data
Yy
Compare Select
Data
(b) Cache

Figure 13.3 Referencing a Scalar

13.3 COMPILER-BASED REGISTER OPTIMIZATION

Let us assume now that only a small number (e.g., 16-32) of registers is available on
the target RISC machine. In this case, optimized register usage is the responsibility of
the compiler. A program written in a high-level language has, of course, no explicit
references to registers. Rather, program quantities are referred to symbolically. The
objective of the compiler is to keep the operands for as many computations as possi-
ble in registers rather than main memory, and to minimize load-and-store operations.

In general, the approach taken is as follows. Each program quantity that is a can-
didate for residing in a register is assigned to a symbolic or virtual register. The com-
piler then maps the unlimited number of symbolic registers into a fixed number of
real registers. Symbolic registers whose usage does not overlap can share the same
real register. If, in a particular portion of the program, there are more quantities to
deal with than real registers, then some of the quantities are assigned to memory
locations. Load-and-store instructions are used to position quantities in registers tem-
porarily for computational operations.

13.3 / COMPILER-BASED REGISTER OPTIMIZATION 473

The essence of the optimization task is to decide which quantities are to be
assigned to registers at any given point in the program. The technique most commonly
used in RISC compilers is known as graph coloring, which is a technique borrowed
from the discipline of topology [CHAI82, CHOW86, COUT86, CHOW90].

The graph coloring problem is this. Given a graph consisting of nodes and
edges, assign colors to nodes such that adjacent nodes have different colors, and do
this in such a way as to minimize the number of different colors. This problem is
adapted to the compiler problem in the following way. First, the program is analyzed
to build a register interference graph. The nodes of the graph are the symbolic regis-
ters. If two symbolic registers are “live” during the same program fragment, then they
are joined by an edge to depict interference. An attempt is then made to color the
graph with n colors, where n is the number of registers. Nodes that share the same
color can be assigned to the same register. If this process does not fully succeed, then
those nodes that cannot be colored must be placed in memory, and loads and stores
must be used to make space for the affected quantities when they are needed.

Figure 13.4 is a simple example of the process. Assume a program with six
symbolic registers to be compiled into three actual registers. Figure 13.4a shows the
time sequence of active use of each symbolic register, and part b shows the register
interference graph (shading and cross-hatching are used instead of colors). A possi-
ble coloring with three colors is indicated. One symbolic register, F, is left uncolored
and must be dealt with using loads and stores.

In general, there is a trade-off between the use of a large set of registers and
compiler-based register optimization. For example, [BRAD91a] reports on a study
that modeled a RISC architecture with features similar to the Motorola 88000 and
the MIPS R2000. The researchers varied the number of registers from 16 to 128,
and they considered both the use of all general-purpose registers and registers split
between integer and floating-point use. Their study showed that with even simple
register optimization, there is little benefit to the use of more than 64 registers.
With reasonably sophisticated register optimization techniques, there is only mar-
ginal performance improvement with more than 32 registers. Finally, they noted
that with a small number of registers (e.g., 16), a machine with a shared register
organization executes faster than one with a split organization. Similar conclu-
sions can be drawn from [HUGU91], which reports on a study that is primarily

D F
& \J\—E—/\J
Rl R2 R3

(a) Time sequence of active use of registers (b) Register interference graph

Figure 13.4 Graph Coloring Approach

474 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

concerned with optimizing the use of a small number of registers rather than com-
paring the use of large register sets with optimization efforts.

13.4 REDUCED INSTRUCTION SET ARCHITECTURE

In this section, we look at some of the general characteristics of and the motivation for
areduced instruction set architecture. Specific examples will be seen later in this chap-
ter. We begin with a discussion of motivations for contemporary complex instruction
set architectures.

Why CISC

We have noted the trend to richer instruction sets, which include a larger number of
instructions and more complex instructions. Two principal reasons have motivated this
trend: a desire to simplify compilers and a desire to improve performance. Underlying
both-of these reasons was the shift to HLLs on the part of programmers; architects
attempted to design machines that provided better support for HLLs.

It is not the intent of this chapter to say that the CISC designers took the wrong
direction. Indeed, because technology continues to evolve and because architectures
exist along a spectrum rather than in two neat categories, a black-and-white assess-
ment is unlikely ever to emerge. Thus, the comments that follow are simply meant to
point out some of the potential pitfalls in the CISC approach and to provide some
understanding of the motivation of the RISC adherents.

The first of the reasons cited, compiler simplification, seems obvious. The task of
the compiler writer is to generate a sequence of machine instructions for each HLL
statement. If there are machine instructions that resemble HLL statements, this task is
simplified. This reasoning has been disputed by the RISC researchers ((HENNS2],
[RADI83], [PATT82b]). They have found that complex machine instructions are often
hard to exploit because the compiler must find those cases that exactly fit the construct.
The task of optimizing the generated code to minimize code size, reduce instruction
execution count, and enhance pipelining is much more difficult with a complex instruc-
tion set. As evidence of this, studies cited earlier in this chapter indicate that most of the
instructions in a compiled program are the relatively simple ones.

The other major reason cited is the expectation that a CISC will yield smaller,
faster programs. Let us examine both aspects of this assertion: that programs will be
smaller and that they will execute faster.

There are two advantages to smaller programs. First, because the program
takes up less memory, there is a savings in that resource. With memory today being
so inexpensive, this potential advantage is no longer compelling. More important,
smaller programs should improve performance, and this will happen in two ways.
First, fewer instructions means fewer instruction bytes to be fetched. Second, in a
paging environment, smaller programs occupy fewer pages, reducing page faults.

The problem with this line of reasoning is that it is far from certain that a CISC
program will be smaller than a corresponding RISC program. In many cases, the CISC
program, expressed in symbolic machine language, may be shorter (i.e., fewer instruc-
tions), but the number of bits of memory occupied may not be noticeably smaller.

13.4 / REDUCED INSTRUCTION SET ARCHITECTURE 475

Table 13.6 Code Size Relative to RISC I

[PATTS2a] . [KATES3] ~ [HEATS4]
11 C Programs 12 C Programs 5 C Programs
RISCI : 10 10 , .10
VAX-11/780 08 Y R,
M68000 09 09
78002 12 - 112
PDP-11/70 0.9 o7 phw T

Table 13.6 shows results from three studies that compared the size of compiled C
programs on a variety of machines, including RISC I, which has a reduced instruction
set architecture. Note that there is little or no savings using a CISC over a RISC. It is
also interesting to note that the VAX, which has a much more complex instruction set
than the PDP-11, achieves very little savings over the latter. These results were con-
firmed by IBM researchers [RADI83], who found that the IBM 801 (a RISC) pro-
duced code that was 0.9 times the size of code on an IBM S/370. The study used a set
of PL/I programs.

There are several reasons for these rather surprising results. We have already
noted that compilers on CISCs tend to favor simpler instructions, so that the
conciseness of the complex instructions seldom comes into play. Also, because
there are more instructions on a CISC, longer opcodes are required, producing
longer instructions. Finally, RISCs tend to emphasize register rather than memory
references, and the former require fewer bits. An example of this last effect is dis-
cussed presently.

So the expectation that a CISC will produce smaller programs, with the atten-
dant advantages, may not be realized. The second motivating factor for increasingly
complex instruction sets was that instruction execution would be faster. It seems to
make sense that a complex HLL operation will execute more quickly as a single
machine instruction rather than as a series of more primitive instructions. However,
because of the bias toward the use of those simpler instructions, this may not be so.
The entire control unit must be made more complex, and/or the microprogram con-
trol store must be made larger, to accommodate a richer instruction set. Either factor
increases the execution time of the simple instructions.

In fact, some researchers have found that the speedup in the execution of com-
plex functions is due not so much to the power of the complex machine instructions
as to their residence in high-speed control store [RADI83]. In effect, the control
store acts as an instruction cache. Thus, the hardware architect is in the position of
trying to determine which subroutines or functions will be used most frequently and
assigning those to the control store by implementing them in microcode. The results
have been less than encouraging. On S$/390 systems, instructions such as Translate
and Extended-Precision-Floating-Point-Divide reside in high-speed storage, while
the sequence involved in setting up procedure calls or initiating an interrupt handler
are in slower main memory.

Thus, it is far from clear that a trend to increasingly complex instruction sets is
appropriate. This has led a number of groups to pursue the opposite path.

476 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

Characteristics of Reduced Instruction Set Architectures

Although a variety of different approaches to reduced instruction set architecture
have been taken, certain characteristics are common to all of them:

* One instruction per cycle

¢ Register-to-register operations
» Simple addressing modes

* Simple instruction formats

Here, we provide a brief discussion of these characteristics. Specific examples are
explored later in this chapter.

The first characteristic listed is that there is one machine instruction per machine
cycle. A machine cycle is defined to be the time it takes to fetch two operands from
registers, perform an ALU operation, and store the result in a register. Thus, RISC
machine instructions should be no more complicated than, and execute about as fast as,
microinstructions on CISC machines (discussed in Part Four). With simple, one-cycle
instructions, there is little or no need for microcode; the machine instructions can be
hardwired. Such instructions should execute faster than comparable machine instruc-
tions on other machines, because it is not necessary to access a microprogram control
store during instruction execution.

A second characteristic is that most operations should be register to register,
with only simple LOAD and STORE operations accessing memory. This design fea-
ture simplifies the instruction set and therefore the control unit. For example, a RISC
instruction set may include only one or two ADD instructions (e.g., integer add, add
with carry); the VAX has 25 different ADD instructions. Another benefit is that such
an architecture encourages the optimization of register use, so that frequently
accessed operands remain in high-speed storage.

This emphasis on register-to-register operations is notable for RISC designs.
Contemporary CISC machines provide such instructions but also include memory-
to-memory and mixed register/memory operations. Attempts to compare these
approaches were made in the 1970s, before the appearance of RISCs. Figure 13.5a
illustrates the approach taken. Hypothetical architectures were evaluated on pro-
gram size and the number of bits of memory traffic. Results such as this one led one
researcher to suggest that future architectures should contain no registers at all
[MYER?78]. One wonders what he would have thought, at the time, of the RISC
machine once produced by Pyramid, which contained no less than 528 registers!

What was missing from those studies was a recognition of the frequent access to
a small number of local scalars and that, with a large bank of registers or an optimizing
compiler, most operands could be kept in registers for long periods of time. Thus,
Figure 13.5b may be a fairer comparison.

A third characteristic is the use of simple addressing modes. Almost all RISC
instructions use simple register addressing. Several additional modes, such as dis-
placement and PC-relative, may be included. Other, more complex modes can be
synthesized in software from the simple ones. Again, this design feature simplifies
the instruction set and the control unit.

A final common characteristic is the use of simple instruction formats. General-
ly, only one or a few formats are used. Instruction length is fixed and aligned on word

13.4 / REDUCED INSTRUCTION SET ARCHITECTURE 477

8 16 16 16 8 4 16
| Add] B c [A] [Lo [eB B
Memory-to-memory Load |r€ c
1=56,D=96,M = 152 Add |ra|m]]
Store | rA A l

Register-to-memory
I=104,D =96,M = 200

(aA)A«<B +C
8 16 16 16 8 4 4 4
Add B C A Add |[rA{B | rC
Add A C B Add | B|rA| 1C
Add B D D Sub ||| B
Memory-to-memory Register-to-memory
1=168,D = 288, M = 456 I=60,D=0,M =60

(b)A<=B+C.;B<A +C:D«D ~B

= Size of executed instructions
D = Size of executed data
M =1+ D = Total memory traffic

Figure 13.5 Two Comparisons of Register-to-Register and Memory-to-Memory Approaches

boundaries. Field locations, especially the opcode, are fixed. This design feature has a
number of benefits. With fixed fields, opcode decoding and register operand accessing
can occur simultaneously. Simplified formats simplify the control unit. Instruction
fetching is optimized because word-length units are fetched. Alignment on a word
boundary also means that a single instruction does not cross page boundaries.

Taken together, these characteristics can be assessed to determine the
potential performance benefits of the RISC approach. A certain amount of “cir-
cumstantial evidence” can be presented. First, more effective optimizing compilers
can be developed. With more-primitive instructions, there are more opportunities
for moving functions out of loops, reorganizing code for efficiency, maximizing reg-
ister utilization, and so forth. It is even possible to compute parts of complex in-
structions at compile time. For example, the S/390 Move Characters MVQC)
instruction moves a string of characters from one location to another. Each time it is
executed, the move will depend on the length of the string, whether and in which di-
rection the locations overlap, and what the alignment characteristics are. In most
cases, these will all be known at compile time. Thus, the compiler could produce an
optimized sequence of primitive instructions for this function.

A second point, already noted, is that most instructions generated by a com-
piler are relatively simple anyway. It would seem reasonable that a control unit built
specifically for those instructions and using little or no microcode could execute
them faster than a comparable CISC.

A third point relates to the use of instruction pipelining. RISC researchers feel
that the instruction pipelining technique can be applied much more effectively with
a reduced instruction set. We examine this point in some detail presently.

478 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

A final, and somewhat less significant, point is that RISC processors are more
responsive to interrupts because interrupts are checked between rather elemen-
tary operations. Architectures with complex instructions either restrict interrupts
to instruction boundaries or must define specific interruptible points and imple-
ment mechanisms for restarting an instruction.

The case for improved performance for a reduced instruction set architecture
is strong, but one could perhaps still make an argument for CISC. A number of
studies have been done but not on machines of comparable technology and power.
Further, most studies have not attempted to separate the effects of a reduced
instruction set and the effects of a large register file. The “circumstantial evidence,”
however, is suggestive.

CISC versus RISC Characteristics

After the initial enthusiasm for RISC machines, there has been a growing realiza-
tion that (1) RISC designs may benefit from the inclusion of some CISC features
and that (2) CISC designs may benefit from the inclusion of some RISC features.
The result is that the more recent RISC designs, notably the PowerPC, are no longer
“pure” RISC and the more recent CISC designs, notably the Pentium II and later
Pentium models, do incorporate some RISC characteristics.

An interesting comparison in [MASH95] provides some insight into this
issue. Table 13.7 lists a number of processors and compares them across a number
of characteristics. For purposes of this comparison, the following are considered
typical of a classic RISC:

1. A single instruction size.
2. That size is typically 4 bytes.

3. A small number of data addressing modes, typically less than five. This
parameter is difficult to pin down. In the table, register and literal modes are not
counted and different formats with different offset sizes are counted separately.

4. No indirect addressing that requires you to make one memory access to get the
address of another operand in memory.

5. No operations that combine load/store with arithmetic (e.g., add from memory,
add to memory).

6. No more than one memory-addressed operand per instruction.
7. Does not support arbitrary alignment of data for load/store operations.

8. Maximum number of uses of the memory management unit (MMU) for a data
address in an instruction.

9. Number of bits for integer register specifier equal to five or more. This means
that at least 32 integer registers can be explicitly referenced at a time.

10. Number of bits for floating-point register specifier equal to four or more.
This means that at least 16 floating-point registers can be explicitly refer-
enced at a time.

Items 1 through 3 are an indication of instruction decode complexity. Items
4 through 8 suggest the ease or difficulty of pipelining, especially in the presence of

“31}SLI910BIRYD SIY} O} WLIOJUOD 10U $30P 184} DSIDg
“51ISLIS10RIEYD SIY) O) WIOJUOI JOU $30P 1841 DSTU,

of - Sk 1 5 8 09608 1]
of z 0 1 o o8 12ddn)
-0 ¥ %k 9 zz | s - XVA
g 8 694 4 W x4 o 9.8@02
£ 2 5ok z € 1z ©{ 9TeZEOSN”
€ ¥ 53k z S1. k4! 1 ogvog oI
1 v ok 'z oT 8 4 © 060¢ W
oy i _ ou 1 p 2 1 0981 1P -
s 1 RO v oy ! 0009/S¥ NGT
o€ . 1 ou b 1 1 14 ol Od/Ld WeI
¥ 1 “ou W 3 AL v 1 . VddH
¥ i ou I .1 € ¥ T “00088OW
¥ ! ou 1 z v 1 - DHUVdS
¥ 1 _ou 1 ou ou 1 v 1 00024 SAIN
o€ 1 ou -1 ~ou 1 v 1 v
ms@ar | B WA Jo | Sumsaippe | Azomwm .
diiosny | 18 squmy | poudgoun) | Jo Ioqumu | pasjquod

479

$108590014 WO Jo sonstaereyd L'¢1 dqeL

480 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

virtual memory requirements. Items 9 and 10 are related to the ability to take good
advantage of compilers.

In the table, the first eight processors are clearly RISC architectures, the next
five are clearly CISC, and the last two are processors often thought of as RISC that
in fact have many CISC characteristics.

13.5 RISC PIPELINING

Pipelining with Regular Instructions

As we discussed in Section 12.4, instruction pipelining is often used to enhance perfor-
mance. Let us reconsider this in the context of a RISC architecture. Most instructions
are register to register, and an instruction cycle has the following two stages:

¢ I: Instruction fetch.

* E:Execute. Performs an ALU operation with register input and output.
For load and store operations, three stages are required:

* I: Instruction fetch.
* E:Execute. Calculates memory address
* D:Memory. Register-to-memory or memory-to-register operation.

Figure 13.6a depicts the timing of a sequence of instructions using no pipelining.
Clearly, this is a wasteful process. Even very simple pipelining can substantially
improve performance. Figure 13.6b shows a two-stage pipelining scheme, in which the
I'and E stages of two different instructions are performed simultaneously. This scheme
can yield up to twice the execution rate of a serial scheme. Two problems prevent the
maximum speedup from being achieved. First, we assume that a single-port memory is
used and that only one memory access is possible per stage. This requires the insertion

Load rA¢< M 1|EiD Load rA« M 1{EID

Load B« M 1{EID Load B M 1 E|D

Add CerA+1B 1lE Add rCe«rA + 1B 1 E

Store M «rC 1|E[D Store M« rC 1{E[D

Branch X 1[E]| Branch X I E
NOOP 1|E

(a) Sequential execution (b) Two-stage pipelined timing

Load rAe«M 1{E[D Load rA«M 1 [E{{E,)|D

Load B« M I1|IE|D Load rBeM 1]E(|E,|D

NOOP I|E NOOP 1[E,

Add rCerA+1B 1[E NOOP I |[E,\|E,

Store M« rC I1IE|ID Add rCerA+1B I [E||E,

Branch X 11E Store Me&rC I [E,|E,|D

NOOP 1]E Branch X I [E\(E;
NOOP 1 |[E\|E;
NOoP I |[Ej|E,

(c) Three-stage pipelined timing (d) Four-stage pipelined timing

Figure 13.6 The Effects of Pipelining

13.5 / RISC PIPELINING 481

of a wait state in some instructions. Second, a branch instruction interrupts the
sequential flow of execution. To accommodate this with minimum circuitry, a NOOP
instruction can be inserted into the instruction stream by the compiler or assembler.

Pipelining can be improved further by permitting two memory accesses per
stage. This yields the sequence shown in Figure 13.6c. Now, up to three instructions can
be overlapped, and the improvement is as much as a factor of 3. Again, branch instruc-
tions cause the speedup to fall short of the maximum possible. Also, note that data
dependencies have an effect. If an instruction needs an operand that is altered by the
preceding instruction, a delay is required. Again, this can be accomplished by a NOOP.

The pipelining discussed so far works best if the three stages are of approxi-
mately equal duration. Because the E stage usually involves an ALU operation, it
may be longer. In this case, we can divide into two substages:

» E,: Register file read
« E,: ALU operation and register write

Because of the simplicity and regularity of a RISC instruction set, the design
of the phasing into three or four stages is easily accomplished. Figure 13.6d shows
the result with a four-stage pipeline. Up to four instructions at a time can be under
way, and the maximum potential speedup is a factor of 4. Note again the use of
NOOPs to account for data and branch delays.

Optimization of Pipelining

Because of the simple and regular nature of RISC instructions, pipelining schemes
can be efficiently employed. There are few variations in instruction execution dura-
tion, and the pipeline can be tailored to reflect this. However, we have seen that data
and branch dependencies reduce the overall execution rate.

To compensate for these dependencies, code reorganization techniques have
been developed. First, let us consider branching instructions. Delayed branch, a way
of increasing the efficiency of the pipeline, makes use of a branch that does not take
effect until after execution of the following instruction (hence the term delayed).
The instruction location immediately following the branch is referred to as the delay
slot. This strange procedure is illustrated in Table 13.8. In the column labeled “nor-
mal branch,” we see a normal symbolic instruction machine-language program.
After 102 is executed, the next instruction to be executed is 105. To regularize the

Table 13.8 Normal And Delayed Branch

Optimized
Address Normal Branch Delayed Branch Delayed Branch
100 LOAD X,1A " LOAD XA " LOAD X,rA
101 ADD 1,7A ADD 1L,1A ' TOMP 105
102 JUMP 105 - JUMP 106 ~ ADD L1A
103 ADD tA, 1B NOOP ADD rA,1B
104 SUB 1C, 1B ADD rA,rB SUB 108)
105 STORE r1AZ SUB tC,1B STORE 1A, Z
106 ‘ STORE r1A,Z

482 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

pipeline, a NOOP is inserted after this branch. However, increased performance is
achieved if the instructions at 101 and 102 are interchanged.

Figure 13.7 shows the result. Figure 13.7a shows the traditional approach to
pipelining, of the type discussed in Chapter 12 (e.g., see Figures 12.11 and 12.12).
The JUMP instruction is fetched at time 3. At time 4, the JUMP instruction is exe-
cuted at the same time that instruction 103 (ADD instruction) is fetched. Because a
JUMP occurs, which updates the program counter, the pipeline must be cleared of
instruction 103; at time 3, instruction 105, which is the target of the JUMP, is loaded.
Figure 13.7b shows the same pipeline handled by a typical RISC organization. The
timing is the same. However, because of the insertion of the NOOP instruction, we
do not need special circuitry to clear the pipeline; the NOOP simply executes with
no effect. Figure 13.7c shows the use of the delayed branch. The JUMP instruction
is fetched at time 2, before the ADD instruction, which is fetched at time 3. Note,
however, that the ADD instruction is fetched before the execution of the JUMP
instruction has a chance to alter the program counter. Therefore, during time 4, the
ADD instruction is executed at the same time that instruction 105 is fetched. Thus,
the original semantics of the program are retained but one less clock cycle is
required for execution.

Time N
1 2 K] 4 5 6 7 8
100 LOAD X, rA 1 E D
101ADD 1, rA | { }
102 JUMP 105 I E
103ADD rA, rB I
105 STORE rA, Z I | E D

(a) Traditional pipeline

100 LOAD X, rA 1 E D

101ADD 1, rA I E

102 JUMP 106 I

103 NOOP I E

106 STORE rA, Z I E | D

(b) RISC Pipeline with inserted NOOP

100 LOAD X, Ar 1 E D

101 JUMP 105 I E

102ADD 1, rA 1

105 STORE rA, Z I E | D

(c) Reversed instructions
Figure 13.7 Use of the Delayed Branch

